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Abstract—Abstractive summarisation for long se-
quences has been a challenging area for research. The
current most commonly used models revolve around
the transformer architecture. These do not perform
well on long sequences and generally run into memory
issues most frequently amongst other problems. The
Reformer architecture addresses some of the issues of
transformers. This work discusses the issues regarding
the transformer architecture, how the reformer, along
with other techniques, attempts to solve these issues
and then downstreams the Reformer Language Model
for the task of abstractive summarisation and evalu-
ates the performance of the pre-trained and non pre-
trained reformer language model against the BigPatent
dataset. For pre-training, a self-supervised approach
of generating the summary from documents based on
the ROUGE-1 F1 score is used, which is named Gap
Sentences Generation (GSG). We also investigate the
performance variation of GSG with varying input size
and Reformer with varying hyper-parameters.

Index Terms—Abstractive Summarisation,
Reformer, Transformer, Self-supervised objective,
Language modelling, Gap Sentences Generation,
Pre-Training

I. Introduction

In NLP, summarisation is of two kinds, extractive sum-
marisation and abstractive summarisation. In extractive
summarisation, the model aims to identify and extract
important subsets of sentences that explain the context
of the actual document concisely. The summary produced
would consist of parts of sentences present in the ac-
tual document. In abstractive summarisation, the model
tries to understand the document and explain it in its
own words. The summary produced would be a concise
explanation of the document in mostly unique phrases.
Abstractive summarisation tends to be more coherent and
similar to that of a human summarisation. The draw-
back of abstractive summarisation is that it tends to
be relatively computationally intensive. For that reason,
extractive summarisation tends to be faster than abstrac-
tive summarisation and abstractive summaries tend to be
much more intuitive to read. In this paper, we perform
abstractive summarisation using the Reformer architecure
with and without pre-training. Most of the recent work
deals with use of transformers and other models to gener-
ate coherent abstractive summaries.

A. The Tranformer Model
Transformers [1] have shown immense success in natu-

ral language understanding and generation tasks. Trans-
former based models are state of the art or competitive
with them for machine translation, question answering and
language modelling. Large transformer based pre-trained
models are commonly used as a base model for fine-tuning
on specific tasks since they show good generalisation abil-
ity. Transformers use an attention mechanism to attend
to the entire sequence at once. The attention mechanism
used in transformers consists of first generating a set of
keys K, a set of queries Q and values V corresponding to
the keys. The output is determined by the values which
are selected from the keys which are closest to the queries.
This requires computation of the dot-product between
queries and keys QKT which is of size (length, length)
where length is the input sequence length. This leads to a
quadratic memory and time complexity in terms of the
input length. Thus, as the input size is increased the
computations can become large very quickly which means
that the input size has to be limited to train models in a
reasonable amount of time. Larger sequences have to be
used to get better results, but training transformers on
large input sizes can only be done by highly equipped cor-
porations and laboratories. Some large pre-trained trans-
formers models have such a large memory requirement
that they cannot fit into a single accelerator, such as
a GPU, for fine-tuning. The high memory requirement
is further increased by the feedforward sub-layer which
can have thousands of units. Also, during training, the
activations or outputs from every layer has to be cached
so that it can be used in the backpropagation step which
contributes to a significant amount of the memory usage;
this increases with the number of layers. Therefore, the
main limitations of transformer is its performance on long
sequences of data.

B. The Reformer Model
The Reformer architecture [2] deals with the limitations

of Transformer by using several techniques to reduce the
time and memory complexity of the model. Specifically,
reformer uses three major techniques, namely Locality
Sensitive Hashing (LSH) based Attention, reversible layers
and feed-forward chunking. Reversible layers were intro-
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duced by Gomez et al. [3], the basic idea is that activations
(outputs) for a layer can be calculated when needed during
backpropagation using the activations of the next layer.
This is achieved by using a pair of inputs and outputs for
every layer which, in case of transformers, is the attention
and the feed-forward layers. Thus, this reduces the amount
of memory required by nl which is the number of layers.
While reversible layers reduce the memory required by
multiple layers, individual layers in the model can be large,
especially the feed-forward layers which can have thou-
sands of units. To reduce memory required by feed-forward
layers, the computation in them can be split into chunks
and each chunk can be processed individually. This is pos-
sible due to the fact that computations in the feed-forward
layers are not time/sequence dependent. By processing the
chunks sequentially, memory requirements can be reduced
by a significant amount. This is known as feed-forward
chunking. Transformers generally use dot-product atten-
tion which involves finding the values (V ) using keys (K)
which are closest to some given queries (Q), all of which are
vectors of shape (batch_size, sequence_length, dmodel).
Q, K and V all come from the same given sequence,
the input sequence, through three different sub-layers. In
LSH attention, queries and keys are shared i.e., K = Q
requiring only two layers. Kitaev et al. [2] showed that
sharing QK needs to no loss in performance. Locality-
senstive hashing (LSH) is a hashing scheme for vectors
in which a random rotation is applied to each vector and
based on the rotated position the vectors are assigned
to different buckets/chunks, the corresponding bucket is
then considered as the hash value. Performing the random
rotations a few times in parallel, usually 2-8, leads to a
distribution in which vectors that lie close to each other
are present in the same chunk i.e., they have the same
hash. In LSH Attention, the queries, or keys, are first
hashed using LSH to get the bucket number for each query.
The queries are then sorted by the bucket number and
inside each bucket, the queries are sorted by their position
in the sequence. After bucketing, a set of m queries in
a bucket are allowed to attend to each other and the
previous bucket. According to Kitaev et al. [2], m is set
to m = 2l

num_buckets . LSH Attention reduces the time
and memory complexity of attention from quadratic to
linear. Thus, Reformer helps in dealing with limitations of
transformer by being efficient for longer sequences.

In standard transformer models, the positions for se-
quences have to be injected using position embeddings.
The position embeddings consist of vectors of length
dmodel for each and every token in sequence i.e., for all
positions 1, 2..., length which is stored in a position
embeddings matrix X. On long sequences, this position
matrix could be very large in the order of hundreds of mil-
lions of parameters. To reduce the number of parameters
further, we use Axial Position Embeddings in which
the embedding matrix is factorized into two matrices, X1

of size (d1, n1) and X2 of size (d2, n2). The embedding

matrices are indexed using the following scheme.

Xi,j =
{

X1
( i, k) i < d1 with k = j mod n1

X2
( i− d1, l) i ≥ d1 with l =

⌊
j

n1

⌋
Axial position embeddings dimensions (d1, d2) are set such
that dmodel = d1 +d2 and the position shape (n1, n2) is set
such that length = n1 × n2. The number of parameters is
reduced significantly. For example, a model with dmodel =
29 = 512 and length = 216 = 65536 will require 512 ×
65536 = 33554432 = 33M parameters with the standard
position embeddings. Using axial positon embeddings with
parameters d1 = 256, d2 = 256, n1 = 28, n2 = 28 will
require 256× 256 + 256× 256 = 131072 = 0.13M which is
a very significant reduction. In this paper, we combine the
Reformer architecture with axial position embeddings.

C. Pre-Training
Pre-training deep neural networks is a popular tech-

nique used to create a general model that works well
on many downstream tasks. For example, a pre-trained
BERT [4] language model can be used in language trans-
lation, question answering and text summarisation all
by fine-tuning the same pre-trained BERT model in a
relatively short amount of time. Fine-tuning is the pro-
cess of training a pre-trained model further on a specific
downstream task. Since pre-training is done on a large
amount of data, they mainly use a self-supervised method
of training. Next token prediction, where the model learns
to generate the next token given the text upto that token,
and mask language modelling (MLM), where some words
in the text are removed or replaced and the models learns
to restore the masked tokens, are two commonly used
self-supervised techniques used in pre-training language
models. Pre-trained language models have shown a high
degree of success in natural language processing and gen-
eration tasks. The main advantage of pre-training is the
inherent generalisability present in them which leads to
sample efficiency i.e., high accuracy can be obtained on
a specific task by using a (relatively) small number of
training samples. Khandelwal et al. [5] showed that pre-
training a decoder-only transformer language model leads
to high sample efficiency for abstractive summarisation. It
was also shown that summarisation, which is a sequence-
to-sequence task, can be modelled using a decoder-only
network with the appropriate inputs.

D. Gap Sentence Generation
Self-supervised objectives generally used in pre-training

language models such as next token prediction and MLM
mask individual tokens or words, which is very different
from summarisation where entire sentences have to be
generated using the context of the document. Zhang et
al. [6] introduced PEGASUS, Pre-training with Extracted
Gap-sentences for Ab-stractive summarisation Sequence-
to-sequence models, where a self-surpervised objective
named Gap Sentence Generation (GSG) is used. In GSG,
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entire sentences are masked instead of individual tokens.
This resembled the task of summarisation more than
masking individual tokens. Our implementation of GSG
is described in section III-E.

II. Literature Review
In abstractive summarisation, using LSTMs, RNNs

along with sequence-to-sequence models [7] was a common
technique in producing state-of-the-art results. Encoder-
decoder architecture built up on these to produce much
better results. Recurrent models have a drawback of
being computationally expensive. To improve these, the
attention mechanism [8] was introduced to increase the
performance; but as it depends on recurrent models, they
are still computationally intensive. In 2017, Vaswani et al.
[1] brought about a new revolutionary architecture called
Transformer that did not depend on recurrence; because
of this, the performance of these transformers were much
higher than its predecessors with much lesser training
time. This led to the rise of extremely potent models such
as BERTSUMABS [9] and T5 [10]. Transformers LMs are
popular for summarisation tasks [11]. Some state-of-the-
art summarisation models that do not use transformers
are Pointer-Generator networks [12] and reinforcement
learning based abstractive summarisation model [13].

BERTSumAbs This [9] is an abstractive summari-
sation model that used a pre-trained Bidirectional En-
coder Representations from Transformer (BERT) model
[4] which was modified for summarisation. BERTSumAbs
uses multiple [CLS] tokens which help it understand the
semantics and structure of sentences better. It also uses
different optmisers and learning schedule for the encoder
and the decoder and they are trained in a two-stage
fashion.

T5 Transformer Text-To-Text Transfer Transformer
[10] is a transformer which was built for transfer learning.
The T5 transformer, an encoder-decoder architecture, was
trained on a extremely large amount of data called C4
(Colossal Cleaned Crawled Corpus), to test the limits of
transfer learning in NLP. The encoder-decoder architec-
ture was designed to be similar in dimensions to BERT.
In T5, the inputs and outputs are both texts i.e., there is
no additonal information given to the model.

Extractive and Abstractive Neural Document
summarisation with Transformer Language Models
Transformers have been used in many successful models
in NLP. A transformer encoder-decoder architecture was
used to summarize text of separate parts of several long
documents. The document would be split into parts such
as introduction, extracted sentences , and/or other extracts
[11]. The transformer can be used both as an extractive
summariser and an abstractive summariser.

Pointer-Generator By addressing the drawbacks
of sequence-to-sequence such as inability to reproduce
facts correctly and their tendency of repetition, the
Pointer-Generator [12] introduces a novel hybrid pointer-
generator. Here, the pointer copies essential words which
are essential to the context, while the generator produces

new sentences using the captured words. A coverage is
also used which minimizes repetition by keeping track of
sentences which have already been covered.

RL Abstractive summarisation Supervised learning
models often exhibit exposure bias, i.e. the bias arising
from the model being exposed only to the training data
distribution instead of its own prediction. One of the best
ways to tackle this is to use reinforcement learning. This
model [13] uses a novel architecture called intra-attention
coupled with token generation and pointe , which prevents
repetition, and a training method that uses reinforcement
learning to generate new sequences.

III. Methodology

A. Reformer LM
We use a Reformer Language model (ReformerLM)

as the primary model in this paper. ReformerLM is a
decoder-only model, this is due to the fact that LSH
requires queries (Q) and keys (K) to be the same - in
an encoder-decoder model Q and K come from different
sequences. This LM uses all the features of reformer
including LSH, reversible layers and FF chunking. Axial
position embeddings is also used. Note that not all layers
of the model use LSH, alternating LSH and chunked dot
product attention were used to keep the benefits of both.

B. Summarisation using Reformer LM
Since it is a language model, it can only perform lan-

guage modelling tasks such as next word/sentence predic-
tion. Language models are trained auto-regressively, the
sentence upto the last predicted word is given as input
and the model predicts the next word. Similarly, during
evaluation/testing, a starting sentence is given and the
model predicts the next sentence(s) by predicting one word
at a time after which the generated sentence along with
the predicted word is fed back as input to the model. This
is the greedy search method of language modelling. While
this technique can lead to the model learning the language
representation effectively, it is not suitable for summarisa-
tion which is a sequence-to-sequence generation task. The
model needs to learn to convert an input of a large size to
a much smaller sized output. Thus, summarisation needs
to be modelled as a language modelling task. The way this
is done is by appending the summary to the text which
is then given as the input. The text and summary are
separated by a special token which we will denote with
<SUMM>. The modification here is that loss is computed
only over the summary. The inputs are padded, with zeros,
to a fixed length since the model takes a fixed length input.
The input along with the loss mask is as given in Fig. 1.

Fig. 1. Inputs and loss mask for ReformerLM summarisation
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The padding scheme used was random padding on both
sides of the inputs, this was done to prevent the model
from learning positions of the text instead of the content.

C. Reformer Encoder-Decoder summarisation
A Reformer encoder-decoder sequence-to-sequence

model uses reversible layers but not LSH, instead a simple
dot product attention is used for the reasons described in
section III-A. The summarisation task for this reformer
is a simple sequence-to-sequence task where the input is
the document and target output is the summary with
a diagonal loss mask for attention i.e., it is allowed to
attended to the previous tokens but not tokens in the
future.

D. Pre-training
Khandelwal et al. [5] showed that pre-training a Trans-

former Language Model (TransformerLM), which is a
decoder-only transformer network, leads to a model which
can be fine-tuned on a downstream summarisation task
even with a limited number of samples. Since reformer is
a transformer and is best used as a decoder-only model,
in this paper we pre-train the reformer model before fine-
tuning it to a summarisation task.

E. Gap Sentence Generation
Zhang et al. [6] introduced a self-supervised pre-training

objective, named Gap Sentence Generation (GSG), specif-
ically designed to be suitable for downstream summari-
sation tasks. In GSG, a pseudo-summary of the input
document is generated by extracting the top sentences
i.e., sentences which are most important to the document.
This resembles the downstream task of summarisation
more closely compared to next word prediction or masked
language modelling, in which individual tokens are re-
placed. The number of sentences to be extracted from the
document is defined by a parameter called Gap Sentence
Ratio (GSR) which is the fraction of number of sentences
to be selected from the document. As in [6], importance
of a sentence is approximated using ROUGE-1 F1 score
which is calculated between a sentence s and the rest of
the document S − s. Algorithm-3 shows the algorithm for
obtaining the top m sentences from a set of sentences, the
score is greedily maximised between the set of selected
sentences S and the rest of the document sentences− S,
thus giving a set of sentences which together represent
the document in the best way. Algorithms 1 and 2 define
helper functions for 3 which have been optimised using
memoisation.

F. Datasets
1) Wiki: The Wiki corpus dataset [14] we used is a

collection of all English articles fromWikimedia. The wiki-
media dump consists of over 3.4 million articles, totalling
over 17 Gigabytes in size 1. Due to resource constraints,
we trained our models on a small subset of the corpus.

1The Wikimedia dumps can be found here: https://dumps.
wikimedia.org/enwiki/latest/

Algorithm 1: Memoization-based Rouge score for
single hypothesis and multiple references
input : A set of reference sentences R, a

hypothesis sentence h and a mapping of
(hypothesis, reference)→ rougeF 1
denoted by T

output: Aggregate Rouge score for all references
S = ∅
for r ∈ R do

if (h, r) ∈ T then
s = T [h, r]

else
s = rouge(h, r)
T [h, r] = s

end
S = S ∪ s

end
return aggregate(s)

Algorithm 2: Memoization-based Rouge score for
multiple hypotheses and multiple references
input : A set of reference sentences R, a set of

hypothesis sentences H and a mapping of
(hypothesis, reference)→ rougeF 1
denoted by T

output: Aggregate Rouge score for all hypotheses
and references

S = ∅
for h ∈ H do

s = rouge_multiple_references(h, R, T )
S = S ∪ s

end
return aggregate(S)

2) BigPatent: BigPatent summarisation dataset was
introduced by [15]. This paper chooses to evaluate the
reformer model against the BigPatent dataset because
most of the standard de-facto datasets for abstractive text
summarisation like CNN/Daily Mail dataset [13] belong
to the news domain i.e, it is a compilation based on news
articles. The problem with these datasets is that it being
a compilation based on news articles the contents required
for the summary generally appear in the starting and
ending of the texts apart from this there are numerous
reasons few of which are mentioned in [16]. The news
article based datasets do not necessarily evaluate the
models understanding of the text especially on longer
sequences. The BigPatent dataset [15], a collection of
patent documents for filed and given patents in the United
States of America with their respective human written
abstractive and coherent summaries. Compared to other
summarisation datasets this paper chooses to evaluate the
Reformer LM for the task of abstractive summarisation
on the BigPatent dataset [15] because of the following
reasons.

1) Summaries are longer than the commonly used

https://dumps.wikimedia.org/enwiki/latest/
https://dumps.wikimedia.org/enwiki/latest/
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Algorithm 3: Sequential Gap Sentence Genera-
tion
input : The set of all sentences sentences from

the document and the number of top
sentences to extract m

output: A set of sentences S which are the top m
sentences

S = ∅
table = Dictionary((hypothesis, reference)→
rougeF 1)

for j in 1 to m do
// Sj will store ROUGE scores
Sj = ∅
for si ∈ sentences do

if si /∈ S then
tmp = S ∪ si

Sj = Sj ∪ rouge_memoize(tmp, S −
tmp, table)

else
Sj = Sj ∪ {−1}

end
end
k = argmax(Sj)
S = S ∪ sentencesk

end

datasets.
2) In the input document the important features are

evenly distributed throughout the document.
3) The texts in the summaries have fewer, lesser and

shorter extracted parts from the document.

G. Experiments
In this paper, we experiment with pre-training a re-

former LM and then fine-tuning it. It is to be noted
that there was resource constraint consistently which con-
sequently lead to the model being trained on a subset
of the datasets and for a shorter period of time. First,
we pre-train a Reformer LM on the English Wikipedia
corpus using GSG i.e., sentences are masked from the
input and given as the summary. As show in section
III-B, the inputs consists of the summary appended to
the document with a special token as delimiter. The pre-
trained model is then finetuned for summarisation on
the BigPatent dataset. For both pre-training and finetun-
ing, a maximum sequence length of 24576 (24K) tokens
was used. All models were trained with the help of the
ADAM optimiser [17] with a learning rate of 1 × 10−4.
The Reformer LM used the following hyperparameters:
dmodel = 512, nlayers = 6, nheads = 8, nhashes = 2. For the
axial position embeddings, n1 = 96, n2 = 256 was used.
The entire model consisted of 3.3M parameters.
Pre-trained and non-pre-trained models were compared

on the BigPatent summarisation task. Outputs were gen-
erated using greedy search decoding which works as follows.
The input given is used to generate the next token, which

Fig. 2. Summary extracted by GSG from a Harry Potter book.

is then appended to the input and fed back into the model.
The model then generates the next token, this is continued
till a maximum number of tokens or when the end sequence
token is predicted which, in our case, is the padding token.
The input to our model when predicting consists of the
document text with the summary token <SUMM> appended
to the end; this is done to prompt the model to generate
a summary.

Trained models are evaluated qualitatively by look-
ing at the generated summary and comparing it to
the text. Quantitatively, generated summaries are eval-
uated using BiLingual Evaluation Understudy (BLEU)
[18] scores - BLEU-1, BLEU-2, BLEU-3 and BLEU-4;
and Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) [19] scores - ROUGE-1 (which was also used in
GSG), ROUGE-2, ROUGE-3, ROUGE-4, ROUGE-L and
ROUGE-W.

Additionally, various experiments are conducted with
GSG to quantitatively and qualitatively evaluate the
pseudo-summaries generated by it and its time complexity.

IV. Results
A. Gap Sentence Generation

GSG was implemented and first tested on a section of
a book, Harry Potter. The pseudo-summary show in Fig.
2 was extracted using the sequential algorithm in 3 on
the Harry Potter book. It can be seen that the pseudo-
summary captures most of the important information from
book, with major events summarised in a sentence.

To evaluate the time complexity of algorithms 1, 2 and
3 we use the following procedure. Random sentences with
k characters are generated by sampling k characters from
a set of alphabets with spaces and full stops where the
probability of a space is 5 times that of other characters.
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Fig. 3. Time complexity of sequential GSG.

Fig. 4. Time complexity of DP table optimised and un-optimised
sequential GSG.

Random sentences with k varying from 2000 to 50000 are
generated and GSG is applied to all of them while profiling
the time taken to generate summaries. It can be seen
in Fig. 4 that the time complexity of sequential GSG is
close to quadratic while the time taken by independent
GSG in Fig. 5 is lower than that of sequential. Fig. 3
shows that time complexity reduced very significantly after
optimisation, from highly exponential to nearly quadratic.
Although the independent GSG is faster, sequential GSG
generates better summaries and hence it was chosen for
further experiments.

B. Performance Evaluation
To study the performance impact of hyper-parameters,

we vary the parameters and examine the memory used in
training. Memory usage is measured by first resetting the
run-time, loading the model and then training the model
for one iteration. The memory requirements are also tested
by turning off features of Reformer such as LSH Attention
and reversible layers, this shows the effect these techniques
have on memory.

Fig. 5. Time complexity of independent GSG.

Fig. 6. Memory usage as model dimension is increased. Memory
usage increases linearly, but stays under 6GiB even for a model with
1538 dimension.

A baseline model with the following hyper-parameters
was used in this section (unless stated otherwise):

dmodel = 512
nlayers = 6
nheads = 8

nhashes = 2
depth = 6

batch_size = 1
bucket_size = 64
ff_chunks = 10

sequence_length = 24576

(1)

The Wiki dataset was used for these experiments.
1) Model Dimension: This is the dimensions of the

attention mechanism dmodel. We test models ranging from
dmodel = 512 to dmodel = 1536. As seen in Fig. 7, it scales
linearly with dmodel and memory usage is under 6GiB for
dmodel = 1536.

2) Model Depth: Depth refers to the number of layers
(attention sub-layer with feed-forward sub-layer) in the
model. As described in Section I-B, Reformer uses re-



7

Fig. 7. Memory usage as model depth is varied. There is not much
variation or increase in the memory usage owing to reversible layers
and weight tying.

Fig. 8. Memory usage as number of LSH rounds is increased. This has
a significant impact on the memory usage. Kitaev et al. [2] suggested
8 rounds of LSH, but that requires a large amount of memory.

versible layers to make the memory requirements nearly
constant as the depth is increased. Fig. 7 shows that the
memory usage does not increase as the depth is increased.
This verifies the effectiveness of reversible layers.

3) Number of hashing rounds: LSH does not always
guarantee that similar vectors fall in the same bucket.
Thus, multiple rounds of LSH are applied in parallel and
the mode of that is taken as the hash. More number of
hashing rounds leads to better accuracy but the memory
requirements can increase significantly. Fig. 8 shows the
substantial increase in memory usage as number of hashing
rounds nhashes is increased. Using nhashes = 8 requires
over 6GiB of memory even for a small model (refer 1).

4) Number of attention heads: Reformer (and Trans-
former) uses multi-headed attention to get different rep-
resentations of the same sequence. Generally, higher the
number of attentions heads, higher the accuracy. Fig. 9
shows a linear increase in memory usage as number of
heads is increased. The increase is significantly smaller
than that of nhashes, hence we can use a higher values
of nheads without increasing the model’s memory require-
ments too much.

Fig. 9. Effect of number of attention heads on memory usage.
Memory usage increases linearly. 8 attention heads can safely be used
without using too much memory. 3

Fig. 10. Memory usage with increasing LSH bucket size (size of QK
per bucket). The effect is significant with larger bucket sizes. A value
of 64 is used in this paper.

5) Bucket size: As described in Section I-B, LSH At-
tention clusters inputs into different buckets. Attention
is applied inside each of the buckets and then between
buckets. Higher bucket size will lead to lesser number of
buckets and thus more dot product computation which
brings it closer to full attention. Increasing bucket size has
a substantial effect on the memory usage as seen in Fig. 10.
It grows exponentially and leads to over 10GiB of memory
usage on a bucket size of 512 which implies a single bucket.
Thus, we use a small bucket size of 64.

6) Batch size: As in all deep neural networks, we
use batch training in ReformerLM to train on multiple
sequences at a time. Generally, batch size has a very
significant affect on the memory usage and it is the
first hyper-parameter to train when running into memory
issues. Though in this case, as shown in this section, other
hyper-parameters can also have a very significant effect
on the memory usage. Fig. 11 shows the linear increase
in memory usage and training time (per iteration) as the
batch size is increased.

3The model dimensions had to be changed very slightly such that
it was divisible by the number of heads.
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Fig. 11. Memory usage and time taken per iteration with increasing
batch size. Clearly, batch size is the most important parameter
when optimising for memory. Though, other parameters can influence
memory requirements substantially.

Fig. 12. Memory usage with varying number of feed-forward chunks.
It can be seen that this parameter does not influence the memory
requirements in any substantial manner. 5

7) Feed-forward Chunking: Feed-forward chunking was
described in section I-B. It should theoretically reduce
the memory requirements significantly, but in our testing
we could not find any improvements when the number of
chunks was changed. Fig. 12 shows this effect, there is no
significant change as the number of chunks is varied.

8) Sequence Length: Sequence length is the maximum
number of tokens in the input sequence. Traditionally
Transformers can only process upto a few hundreds or few
thousands of tokens using a single accelerator. The LSH
Attention in Reformer is the most important technique for
efficient processing on longer sequences. Thus, we compare
a ReformerLM with LSH Attention to a ReformerLM
with full (dot product) attention on a range of sequence
lengths. Fig. 13 shows the results from this testing. It is
evident that LSH Attention makes the time complexity
of the model linear in terms of sequence length and can
process even 81, 920 tokens on a single GPU. On the
other hand, the model with full attention can only process
upto 8, 192 tokens at a time on the same machine. The

5A ReformerLM with depth 16 was used for this experiment.

Fig. 13. Memory usage with varying input sequence length of a
complete ReformerLMmodel compared to a ReformerLMmodel with
full attention (instead of LSH attention). The standard ReformerlM
scales linearly with sequence length and can even fit 81, 920 tokens
on a single GPU7, while the full attention model runs out of memory
for sequences over 8, 192 in length and scales exponentially.

time complexity of the full attention model seems to be
exponential in terms of sequence length. This shows the
efficiency of Reformer.

9) Reversible Layers: Reformer uses reversible layers to
reduce the memory requirements of a deep model (a model
with large number of layers). With reversible layers, the
memory requirement is reduced such that multiple layers
do not require additional memory. This is validated in
our testing as seen in Fig. 14. With Reversible layers, the
memory requirements is constant as the number of layers
is increased, while the model without reversible layers
requires more memory (increases linearly) as the depth
is increased.

Fig. 15 shows the comparison between the same two
models but with varying sequence length. Again we see
that the Refomer model with reversible layers has a much
lower memory footprint across all sequence lengths. The
model without reversible layers can only process upto
20, 480 on the same machine. This emprically proves the
effectiveness of reversible layers in reducing memory re-
quirements. Comparing with Fig. 13, it can inferred that
LSH Attention has a higher effect on the time complexity
(with respect to sequence length) than reversible layers.

C. Reformer LM without pre-training
In this experiment, we train a newly initialised Reformer

LM on a subset of the BigPatent dataset for 10 epochs.
The model was not able to learn any representation with
the amount of data given and training iterations. The
model predicted the same token over and over again and
scores were all zeros or nearly zero.

D. Pre-trained Reformer LM using GSG
A Reformer LM is first pre-trained, using GSG, on a

subset of the Wiki corpus for several epochs. Pre-training
7A ReformerLM with depth 16 was used for this experiment.

Kitaev et al. [2] have demonstrated Reformer processing over 500, 000
tokens on a single accelerator.
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Fig. 14. Memory usage with varying model depth of a complete Re-
formerLM model compared to a ReformerLM model with reversible
layers disabled. Disabling reversible layers makes the model scale
linearly (in memory) with number of layers since more memory is
required to store activations at each layer.

Fig. 15. Memory usage with varying input sequence length of a
complete ReformerLMmodel compared to a ReformerLMmodel with
reversible layers disabled. The model without reversible layer also
scales linearly but uses much more memory and can process only
upto 20, 480 tokens before running out of memory.

helps it learn internal representations for words and GSG
helps approximately learn to construct a summary. The
pre-trained model is then fine-tuned on a subset of the Big-
Patent summarisation dataset. The trained models were
then evaluated using metrics such as BLEU and ROUGE.
The evaluation results are summarised in Table I. It can be
noticed that non-pre-trained model did not learn anything
while the pre-trained model achieved respectable scores for
such little data and training time.

E. Examples of generated summaries
A sample generated from the model after fine-tuning it

on a very small subset of BigPatent is given below.
whre intersulural trestle linearly oxes is sensed
be adiable to brashing areas an used by a ground
by caross . as an ierce increased be container for
device includes a water surface , is achieved by
mounted rods of supporting a tube of directed
br is supper rod into a briecting the bioccle of a

TABLE I
Evaluation results for pre-trained and non-pre-trained

Reformer LM

Metric Pre-Trained Non-Pre-Trained
BLEU-1 22.71 0.0
BLEU-2 7.86 0.0
BLEU-3 2.86 0.0
BLEU-4 6.31 0.0
ROUGE-1 25.36 0.48
ROUGE-2 2.79 0.0
ROUGE-3 0.50 0.0
ROUGE-4 0.0 0.0
ROUGE-L 21.62 0.98
ROUGE-W 5.87 0.20

ground in plate , a peump of a drose oil fortion ,
and estruce , escure outface clitable by products
the its of polycomic emplements , secured on a
plurality of a ultrail clot alloward to in condition
in

The summary is far from perfect, but it is able to generate
English sentences with some spelling mistakes; this is quite
good for a model that was trained on a very few data
and for a short time. This demonstrates the efficiency of
Reformer, a relatively large reformer model was trained on
long sequences (24K) with limited resources and data.

V. Conclusions and Future Work
This paper demonstrates the efficiency of Reformer in

terms of memory and time requirements and the sam-
ple efficiency of pre-training models. GSG is used as a
pre-training objective that resembles summarisation more
closely compared to other pre-training techniques; this
assists the model in fine-tuning stage to achieve sum-
marisation more quickly and accurately. Non-pre-trained
models perform very poorly in direct summarisation task
when samples and training time are limited. Thus we show
that pre-training a decoder-only Reformer LM using GSG
can perform abstractive summarisation well when there is
a resource constraint. We also describe an efficient imple-
mentation of GSG which is optimised using memoization.

Future work related to this paper may include the
following.

1) Pre-training a larger Reformer LM on extremely
large corpora such as Colossal Clean Crawled Corpus
(C4) [10] and HugeNews.

2) Fine-tuning GSG pre-trained Reformer LM on other
summarisation datasets such as CNN/Daily Mail
[20], XSum [21], Reddit TIFU [22].

3) Building larger Reformer with architectures akin to
BERT [4] and T5 [10] and then pre-training them.

4) Using GSG for pre-training other state-of-the-art
summarisation models or other transformer models.
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