
Par-a-graph: Parallelising PageRank
Aditi Ahuja

PES University
Bangalore, India

aditiahuja@pesu.pes.edu

Pranav Kesavarapu
PES University

Bangalore, India
pranavkesavarapu@gmail.com

Samyak S. Sarnayak
PES University

Bangalore, India
samyak201@gmail.com

Project Guide
Dr. T.S.B Sudarshan

PES University
sudarshan@pes.edu

Abstract—Graph algorithms are widely used as the backbone
of many modern systems spanning various domains. Some of
the most popular applications include graph databases, social
networks and search engines. With graphs now far more vast
than earlier, efficient implementations of commonly used graph
algorithms are increasingly relevant.

This work details a parallel PageRank algorithm on an efficient
data structure, implemented using Golang. We observe speedups
ranging from 1.58x to 4.23x on various graphs of different
characteristics. The results are also explained by studying the
cache characteristics of our algorithm on these graphs.

Index Terms—algorithms, graphs, pagerank, parallelization

I. INTRODUCTION AND USE CASES

Pagerank was originally developed [1] to rank web-pages
on the internet, based on their relative importance. Though,
the algorithm is a general graph algorithm that can be used
to identify the most important nodes in any graph network.
Graphs can be seen in a variety of real use cases such as
social networks, research paper citations, chemical structure of
molecules, road networks and even call graphs of a large code
base. Subsequently, pagerank has been applied to these areas to
identify top users to follow, ranking/credibility of researchers,
assess hydrogen bonding, predict traffic flow and to identify
the most important functions respectively [2].

Our implementation of pagerank is not tied to any of these
applications. The Golang code base released alongside this
paper can be integrated into other projects that make use of
graphs, such as graph databases.

II. IMPLEMENTATION

A. Data Structures

Two different representations of graphs were tested in
our implementations of PageRank. The first was a standard
Adjacency array where each node u is mapped to an ar-
ray of outgoing nodes Ou. This was implemented using a
Golang map (a map[int][]int to be precise). We found
some drawbacks when implementing pagerank using this data
structure. The pagerank algorithm we implemented requires
a list of incoming nodes Iu to get and update the pagerank
values from. Therefore, an additional adjacency array needs
to be created at the beginning of the algorithm which maps
each node u to its array of incoming nodes Iu. This requires
up to O(N2) extra space and an additional traversal of the
whole graph, in the worst case. Since the algorithm requires
the outdegree (cardinality of the set of outgoing nodes for a
given node, |Ou|) of every node in the inner loop, they have
to be pre-computed and stored in a separate array. This leads
to O(N) extra space and computation.

We used edge lists to store the graphs on disk. An edge
list is a list with each entry in the form u, v that denotes
an edge of the graph - from node u to v. To be useful in
the algorithm, edge lists have to be converted to an adjacency
array of either incoming or outgoing nodes. Using these in the
algorithm directly is not feasible, hence we do not compare
them.

An alternative representation of graphs that we test is the
Compressed Sparse Row (CSR) representation [3]. The
representation consists of three different arrays - a vertex
array, an edge array and an outdegree array. The vertex array
stores cumulative in-degrees (starting from 0), the edge array
stores edges but in the reverse order (destination to source
mapping) and the out degree array stores out degree of every
node. The edge sub-array corresponding to each node i.e.,
edgeArray[vertexArray[i]:vertexArray[i+1]]
is sorted to increase data locality and reduce cache misses.

B. Algorithm

The pagerank algorithm used was as follows:
1) Initialise the pagerank of each of the N vertices to 1

N .
2) Each iteration for a vertex u involves the following

computation (where PRu denotes the pagerank of vertex
u, Iu denotes the set of incoming nodes to u, Ov denotes
the set of outgoing nodes from v and α is the damping
factor which is usually set to 0.85):
sumu ← 0
for v ∈ Iu do

sumu ← sumu +
PRv

|Ov|
end for
PRu ← 1−α

N + α · sumu

3) This is continued till the difference between the page
rank of all vertices between two consecutive iterations
is less than a set error threshold.

The first approach to parallelization we used was as follows.
A new goroutine 1 is launched to process each node’s iteration
(given in the algorithm in step 2. above). This introduced
a massive overhead as N goroutines were launched in ev-
ery iteration, leading to an approximately 20x slowdown in
performance, compared to the serial implementation. Note
that Golang’s sync.WaitGroup is used to synchronize the
completion of the computation of all goroutines.

The next approach used the Fanout pattern of concurrency
on Golang. A fixed number of goroutines were launched at

1A process in Golang’s Communicating Sequential Processes (CSP) based
concurrency model.



beginning of the algorithm. All of the goroutines used a shared
channel to receive the next node to process and perform the
computation for that node. In every iteration, all of the nodes
are sent over the buffered channel and the work is divided
at runtime based on which goroutine is free to receive on the
channel. This means there are N number of sends and receives
over the channel in each iteration with multiple goroutines
contesting for the lock on the channel. Hence, there still exists
a large overhead. It can be observed here that the same set of
nodes are sent over the channel in every iteration.

The final approach builds upon this idea and statically
assigns a chunk of nodes to each goroutine. Let P be the
number of goroutines used and V be the set of nodes (vertices).
V is divided into equally-sized (except for the last chunk), P
number of chunks and each goroutine only performs com-
putations on its chunk of nodes. An array of P channels of
struct{} are used to signal the start of an iteration to the
goroutines. Note that only P sends and receives are performed
in total, with each of them being on separate channels i.e.,
there is no contestation for locks.

Each goroutine is also given a separate δ (error term) which
are then summed up at the end of the iteration to find the total
error. Hence the δ computation does not involve any locks and
only requires a summation over a P -sized array. A similar
optimization was implemented for the leak computation too.
The algorithm for the main loop of the final implementation
is as follows:

sig ← (ch1 ch2 . . . chP )
δs← (0.0 0.0 . . . 0.0)
leaks ← (0.0 0.0 . . . 0.0)
while true do
δ ← 0.0
for i← 0 to P − 1 do
sig i ← struct{}

end for
wait for all goroutines to finish computation
leak ← 0.0
for i← 0 to P − 1 do
leak ← leak + leaksi
leaksi ← 0.0
δ ← δ + δsi
δsi ← 0.0

end for
leak ← leak · α
swap(x, xnew)
if δ < ε then
break

end if
end while

III. COMPARISON WITH EXISTING WORKS

In comparison with existing pagerank implementations, our
approach provides the following benefits:
• The CSR representation provides a large increase in

performance for all variations of the pagerank algorithm
tests. It is more cache friendly and provides better data

locality as even edges of neighbouring nodes (in terms of
their ordering, not edges) are stored contiguously and the
edges themselves are sorted. While this leads to better
cache locality when accessing the neighbours, there still
exist cache misses when accessing pageranks of these
neighbours.

• Our final implementation leverages data parallelism
where similar computations are performed on each sec-
tion in a separate goroutine.

• We provide an open source implementation 2 of the
algorithm and the experiments. Our implementation is
readable as well as practical since we make use of the
Go programming language.

IV. RESULTS

A. Testing and Benchmarking Methodology

The tests were developed using Go’s testing package.
For verifying accuracy, the results of our implementation were
compared with a reference, serial implementation in Go. 3

Benchmarking too used the testing package. The pager-
ank computation was performed multiple times to get more
accurate timings. The benchmarks were repeated with multiple
error thresholds: 10−6, 10−9, 10−11.

B. Datasets Used

We have tested our algorithms on the following datasets -
Wikipedia vote network [4] (named WikiVote), Quora Question
Pairs 4 (named Quora), Stanford web graph [5] (named
Stanford) and the English Wikipedia graph 5 (named Large).

Graph Edges Vertices Max. Density
WikiVote 103689 7115 0.0021

Quora 404291 537935 2.8e−6

Stanford 2312497 281903 5.82e−5

Large 46092177 2080370 10−5

C. Performance Results

Prior to the final implementation, we observed the following
on the Large graph:

• PageRank with adjacency lists and N goroutines - 1.03x
maximum speedup (serial - 35.03s, parallel - 33.97s with
ε = 10−6).

• Fixed number of goroutines with fanout pattern - 1.36x
maximum speedup (serial - 136.47s, parallel - 100.04s
with ε = 10−11).

• Node partitions/chunks, parallel initializations, leak and
delta calculations - 2.71x maximum speedup (serial -
221.45s, parallel - 81.61s with ε = 10−11)

The following results were obtained with the final imple-
mentation involving CSR representation and node partitioning.

2https://github.com/metonymic-smokey/par-a-graph
3https://www.github.com/dcadenas/pagerank
4https://www.kaggle.com/c/quora-question-pairs/data
5https://cfinder.orgwiki/?n=Main.Data

https://github.com/metonymic-smokey/par-a-graph
https://www.github.com/dcadenas/pagerank
https://www.kaggle.com/c/quora-question-pairs/data
https://cfinder.orgwiki/?n=Main.Data


• Large Graph:
Error (ε) Serial (s) Parallel (s) Speedup

E6 24.17 15.30 1.58
E9 43.75 29.07 1.504

E11 70.13 44.32 1.582
• Quora Graph:

Error (ε) Serial (s) Parallel (s) Speedup
E6 0.46 0.18 2.62
E9 1.20 0.45 2.64

E11 1.66 0.68 2.43
• Stanford Graph:

Error (ε) Serial (s) Parallel (s) Speedup
E6 0.91 0.251 3.62
E9 1.93 0.0.46 4.23

E11 2.36 0.63 3.73
• WikiVote Graph:

Error (ε) Serial (s) Parallel (s) Speedup
E6 0.0073 0.0037 1.96
E9 0.012 0.063 2.02

E11 0.016 0.087 1.83

D. Cache characteristics

Using Cachegrind, each line of code was profiled for
number of data reads, number of L1 cache misses and number
of L3 cache misses across all the datasets. The experiments
were performed on a machine with an L1 cache size of 128KB
and an L3 cache size of 6MB.

1) Large graph: For the Large graph, we notice
a large number of cache misses. This is because
each partition has a page rank vector size of 1MB.
All 16 partitions do not fit inside the L3 cache.

2) Quora graph: The Quora graph has a Pagerank vector
size of 263 KB per partition. All partitions fit into the L3
cache of the machine used, but may be evicted due to other
data. Since this graph is extremely sparse, most new reads
are observed in new partition assignment and delta sum.

3) Stanford graph: The Stanford graph has a Pager-
ank vector size of 138 KB per partition. All parti-
tions fit into the L3 cache, but shows a small num-
ber of misses due to other vectors being accessed.

4) WikiVote graph: Smallest PageRank vector size with
no L3 cache misses. The sum calculations shows the most
L1 cache misses, as expected, due to random accesses.

V. YOUTUBE VIDEO

This is the link to our YouTube video: https://youtu.be/
Xl2a8j3zats

ACKNOWLEDGMENT

We would like to thank our guide Dr. T.S.B Sudarshan
for his guidance during the Heterogrenous Parallelism course,
during which the project was developed. We would like to
thank him and the teaching assistants, Siddarth Karki and
Nikhil Khatri, for their guidance from the ideation to the final
development phases of the project.

REFERENCES

[1] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks, vol. 30, pp. 107–117, 1998.

[2] D. F. Gleich, “Pagerank beyond the web,” CoRR, vol. abs/1407.5107,
2014.

[3] S. Morishima and H. Matsutani, “Performance evaluations of graph
database using cuda and openmp compatible libraries,” SIGARCH Com-
put. Archit. News, vol. 42, p. 75–80, Dec. 2014.

[4] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in social
media,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, (New York, NY, USA), p. 1361–1370,
Association for Computing Machinery, 2010.

[5] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” CoRR, vol. abs/0810.1355, 2008.

[6] K. Lakhotia, R. Kannan, and V. Prasanna, “Accelerating pagerank using
partition-centric processing,” in Proceedings of the 2018 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX ATC ’18, (USA),
p. 427–440, USENIX Association, 2018.

https://youtu.be/Xl2a8j3zats
https://youtu.be/Xl2a8j3zats

	Introduction and Use Cases
	Implementation
	Data Structures
	Algorithm

	Comparison with Existing Works
	Results
	Testing and Benchmarking Methodology
	Datasets Used
	Performance Results
	Cache characteristics
	Large graph
	Quora graph
	Stanford graph
	WikiVote graph


	YouTube Video
	References

