
Architecting and Deploying Optimized GANs with
minimal footprint for Fashion Synthesis

Samyak Sarnayak∗, Ritik Hariani†, K S Srinivas‡
Department of Computer Science and Engineering, PES University

Bengaluru, India
Email: ∗samyak201@gmail.com, †ritikhariani@pesu.pes.edu, ‡srinivasks@pes.edu

Abstract—Fashion generation using Generative Adversarial
Networks (GANs) has been very effective at synthesising new
clothing items, but the models are large, over-parameterized and
are not accessible to an average fashion designer. We propose
that using the Lottery Ticket hypothesis (LTH) and Early Bird
Tickets (EBT) along with channel pruning on large GANs leads
to smaller, optimized models that can be deployed on a client-
side web app or a mobile app. We empirically show that LTH
can reduce the size of the model by over 55% and EBT can
reduce model size by over 16 times (6.2% of the original size)
and the inference time of the model by over 21 times (4.7% of
the original model). Thus, the pruned models can be run on low
power devices or on a client side browser or app with minimal
footprint.

Index Terms—Generative Adversarial Networks, Fashion Gen-
eration, Pruning, Lottery Ticket Hypothesis, Early Bird Tickets,
Channel Pruning

I. INTRODUCTION

Deep learning has recently been employed for many ap-
plications within the fashion industry. These include rec-
ommendation systems on e-commerce sites, style-matching,
personalized customisation, prediction of trends, AR clothing
experience, clothing classification. One such domain that has
been gaining attention over the last few years includes that of
Fashion Synthesis and Generation. Fashion Synthesis involves
the processes of generating a variety of new clothing articles
for customers in a bulk and within a short span of time. To
achieve this feat, Deep learning frameworks such as Genera-
tive Adversarial Nets can be applied on clothing datasets.

Generative adversarial networks (GANs) [1] is a concept
based on game theory for generative learning. GANs aim at
training a generator network G to produce samples from the
dataset by transforming latent vectors of noise. The feedback
from the Discriminator acts as a training signal for G. The
Discriminator D is trained to distinguish samples between the
generator’s output distribution and the real data. The generator
network G in turn is then trained to deceive the discriminator
into accepting its outputs as equivalent of being real.

GANs are heavy weighted models and training them has
proved to be a challenging task. They also require a lot of
computation time for training. Methods to improve training
on GANs [2] have been developed over the recent years. We
propose the use of optimization techniques such as Lottery
Ticket Hypothesis (LTH) and Early Bird Tickets (EBT) to
tackle this situation. LTH can be used to minimize the number

of the parameters (thereby creating a sparse network) and EBT
is an improvement over LTH that also reduces the training
time. These techniques involve pruning of the neural network
where the parameter counts of trained networks can be reduced
by over 80%. The LTH algorithm identifies winning tickets
which are the weights of higher magnitude by the method of
iterative pruning.

Early Bird Tickets is an improvement over LTH which
showed that the winning tickets can be identified very early in
training without having to iteratively train and prune a network
multiple times. The winning tickets could be identified with
only 6-20% of the total training. To improve the inference
time and size of convolution-based models, channel pruning
can be used to remove unused channels from the convolution
layers.

II. RELATED WORK

Generative Adversarial Networks (GANs) [1] were intro-
duced by Goodfellow et al. A GAN comprises of two net-
works, a generator G and a discriminator D. The generator
tries to learn the given data distribution and generates new
data points from that distribution. The discriminator tries to
determine whether a given image was obtained from the
generator or it was obtained from the original dataset. The
only input for the generator is a noise vector, known as the
latent vector, which varies the generator’s output as the noise is
changed. The generator’s goal is to fool the discriminator into
outputting that its generated image is in the original dataset
while the discriminator maximises the probability of correctly
classifying images from the dataset and the images obtained
from the generator. This can be represented as a loss function
as follows.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(1)

The generator and discriminator can both be neural networks
which allows back-propagation of gradients from the discrim-
inator outputs to the generator inputs.

Radford et al. [3] proposed the Deep Convolutional Gener-
ative Adversarial Network (DCGAN) which uses convolu-
tional layers with ReLU in the generator and with LeakyReLU
in the discriminator. Specifically, deconvolution (or convolu-
tion transpose) is used in the generator and convolution is
used in the discriminator. Between each of the convolution

Fig. 1. A model training pipeline based on LTH

and deconvolution layers, batch normalization [4] is used
to stabilize the gradients. Radford et al. [3] also provided
architecture guidelines for training DCGANs which we use
in our work.

Both the discussed GANs are unsupervised i.e., they only
need the images themselves to train. Usually, the datasets
used to train them also have labels for classification. The
generator’s outputs can be conditioned on the class label to
have more control over the output. Mirza et al. [5] introduced
the Conditional Generative Adversarial Network (CGAN).
In a CGAN, both G and D are conditioned on the input label
y. The loss function then becomes:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(2)

Negar Rostamzadeh et al. [6] introduced a dataset of
over 290,000 images of fashion articles of size 1360x1360
pixels paired with item descriptions. Each item includes a
recommendation by a stylist for a given fashion season. It
also contains information about the designer and the brand.
[6] synthesised their high resolution images using P-GANs
(Progressive GANs) whereas the textual descriptions for each
image was created using StackGAN-v1 and StackGAN-v2.

Ziwei Liu et al. [7] introduced DeepFashion, a high reso-
lution clothes dataset with intensively detailed annotations. It
contains over 800,000 images, which contain keywords that
describe the attributes, clothing landmarks, location, street
picture and image of the consumer. To test and present the
capabilities of their dataset they proposed a deep model known
as FashionNet which was used to predict clothing attributes
and landmarks by learning the clothing features. FashionNet
was inspired by the traditional VGG-16 network.

Han Xiao et al. [8] introduced Fashion-MNIST, a dataset
that consists of 70,000 gray-scale images of fashion products,
each of 28 × 28 pixel resolution. It conists of 10 categories
each with 7,000 images per category. The dataset has a training
set of 60, 000 images and a test set of 10,000 images.

Frankle & Carbin [9] introduced the Lottery Ticket Hy-
pothesis (LTH) that proposed to find sparse, pruned sub-
networks in a dense trained network. These sub-networks had
the special property of being re-trainable allowing them to

be as performant as the original model, sometimes even be
superior. The LTH method consists of the following steps.

1) Train a network fully for i iterations from random
initialisation. These initialisations must be saved.

2) Mask some p% of the parameters of the network. p is
tun-able hyper-parameter and the masking is based only
on the magnitude of the weights i.e., smaller weights are
masked to 0 while others retained.

3) Set the masked weights to 0 and the remaining weights
are re-winded to their initial random values (saved in
step 1).

4) Re-trained the new masked network
5) The process is continued iteratively until the desired

sparsity is achieved.
Figure 1 shows the pipeline for training a model based on LTH.
This method performed well on the experiments showcased
by the authors with some networks being pruned upto 80%
without losing accuracy. A few major issues were identified
in LTH which are the following.

1) The process involves training the models multiple times.
Even with one-shot LTH, the model has to be trained
twice. In iterative pruning, the models might have to be
trained more than 5 times. This leads to a large amount
of computation overhead that is very prohibitive to the
goal of faster training.

2) Pruned sub-networks are represented by sparse matrices
since the pruning is unstructured. Due to the fact that
modern hardware such as GPUs and TPUs used for
training such networks are optimised for dense matrices,
there is little to no speedup achieved during training as
well as testing/predicting. Thus, LTH does not aid in the
goal of architecting optimised networks to run on low
end devices.

Liu et al. [10] introduced a network slimming (pruning)
method based on channel-level sparsity (henceforth called
channel pruning). In channel pruning, a scaling factor γ
is associated with every channel in the convolution and
convolution-transpose layers. The scaling factors γ are trained
along with the network (with some regularization to keep
the factors small). After training, the channels with low γ
are pruned by removing the entire channel along with its
weights. The threshold for γ is chosen based on the desired
sparsity percentage. Liu et al. further propose the use of Batch
Normalization (BN) [4] and the inherent scaling parameter γ
present in BN as a substitute for scaling factor. This leads
to a method that does not require any changes in the model
architecture as most vision models use BN. The pruned models
can be further fine-tuned and re-trained to provide similar or
higher performance as compared to the original models.

You et al. [11] developed an efficient method for training
large networks by combining the works of LTH and channel
pruning, this was named Early Bird Tickets (EB tickets). EB
tickets can be identified very early in training, hence the name
Early Bird. Unlike LTH, the networks do not have to be trained
completely. Here, the masks are not over the entire network

Fig. 2. A model training pipeline based on EBT

weights but the masks are channel-based i.e., entire channels
are masked to 0 or 1 from the ideas of channel pruning. The
winning tickets are identified early in training by using a large
learning rate and monitoring the channel masks by using a
metric known as the Mask Distance metric, which is simply the
hamming distance between channel masks of two consecutive
epochs of training. It was shown that the masks are fixed early
in training and there is little change as training progresses. A
rolling window of the mask distances are kept and based on a
set threshold ε, when all of the distances in the windows are
less than the threshold, the EB training is stopped and masks
are fixed. Based on this mask, entire channels are pruned and a
new model with only the required channels is made. Figure 2
shows a model training pipeline based on EBT. In summary,
this method has the following advantages.

1) Pruned sub-networks are identified early in training (6-
20% of original epochs or steps). This implies that
networks do not have to be trained multiple times.

2) Pruned sub-networks are not reset to original random
initialized weights.

3) Pruned sub-networks are optimized even for modern
hardware which work only on dense matrices since
entire channels are pruned and the model dimensions
themselves change.

4) Thus, EB training reduces the training time, model
size, inference time of model as well as the overall
computation required for training and testing.

Heusel et al. [12] proposed a method of training GANs to
help them converge locally. Two-Time Update Rule (TTUR)
refers to using dissimilar learning‘ rates for the generator and
the discriminator. Specifically, a higher learning rate is used
for the discriminator while a lower learning rate is used for
the generator. Heusel et al. proved that TTUR leads to better
convergence in GANs.

Sinha et a. [13] introduced a simple method of improving
performance of GANs called Top-k training. The method in-
volves using the discriminator as a scorer i.e., the discriminator
outputs are used to judge the generator outputs. Some of the
generator outputs which are of low quality i.e., the samples
generated by the generator which are easily labelled as fake

by discriminator are discarded. The discarded samples do not
contribute to the gradients and the generator only learns from
the higher quality samples leading to better outputs. We use
this method to improve the quality of outputs from our GANs.

III. METHODOLOGY

The architecture for Deep Convolutional Generative Ad-
versarial network (DCGAN) was the same as in [3] with a
latent vector of 100 length and 5 convolutional layers, each
with a 4x4 kernel, along with BN for both for both the
networks (G and D). The final output image is of size 64x64.
This architecture is named DCGAN64 and is used for the
FashionMNIST experiment (final channel size 1) as well as
DeepFashion (final channel size 3) with down-scaled images.

An alternate architecture with 6 layers and a final output
size of 128x128 was used for the DeepFashion experiment.
This architecture is named DCGAN128.

The architecture for our Conditional Generative Adversarial
network [5] involves a Generator and a Discriminator condi-
tioned on the input label y. The input vector of class labels to
the generator has been encoded using one-hot encoding. Our
CGAN model consists of a generator that uses a latent vector
of length 100 and 5 convolution layers, each with a 4x4 kernel,
stride 2 and a padding of 1 followed by Batch Normalization
[4]. The one-hot class vector is combined with the noise vector
before giving it as an input to the generator. It uses the ReLU
activation function for the intermediate layers and a tanh
for the output layer. The discriminator model consists of 5
convolution layers, each with a kernel size of 4, stride 2 and
padding of 1 followed by Batch Normalization. The input to
the discriminator is the image from the generator along with
the an additional channel for every class in the dataset. The
Leaky ReLU activation function is used for the intermediate
layers along with a sigmoid activation as an output. The output
is an image of size 64x64 and is based on the provided input
label.

LTH optimization was implemented on the GAN models.
This optimization was implemented individually on the gen-
erator and discriminator. The weights are initialized using
Random initialization. A prune percentile p% is set as a
tun-able hyper-parameter that decides the amount of weight
reduction needed. The weights of each generator and the
discriminator are masked and pruned upto the percentile p.
Once the weights drop below the threshold t, decided by pth
percentile of the weights, they are masked to 0 while others
are retained. The remaining weights were then re-initialized
to the their initial random values and the network model was
retrained. This process proceeded iteratively until a sparse
enough network that reproduced images with near original
accuracy was obtained.

Channel Pruning was implemented by using a mask over
all the channels over the network. The pruning was done
individually for generator and discriminator as was done with
the LTH implementation. The masks had the same shape as
the weights of the Batch normalization layers which represent
the scaling factors γ. A prune percentage threshold p is set

as a hyper-parameter, this controls the number of channels to
prune as a percentage. Since entire channels are pruned rather
than individual neurons, the final sparsity of the network will
be much lesser than p. For example, in one of the experiments,
choosing p = 0.5 lead to a sparsity of 73.7%. Based on p, the
pth percentile t is calculated from the BatchNorm weights.
This percentile value t is used as the threshold and the masks
M of all channels with γ lower than this are set to 0.

wbn = sort(wbn) (3)
t = wbnp∗total

(4)
Mγ<t = 0 (5)

A new network with N − n number of channels, where
N is the original number of channels and n is the number
of channels to be pruned (in each layer), is created and the
parameters of the remaining channels in the original network
are copied to the new network. This leads to a network which
has significantly lower number of parameters and performs
better on traditional hardware.

Early Bird ticket is implemented as follows.
1) Initialize channel pruning masks for every layer
2) Initialize a empty bounded queue Q, with maximum size

Qm to store the mask distances after every epoch
3) After every epoch i, calculate the mask distance as

follows.

d =
∑
|(Mi −Mi−1)| (6)

4) Add d to the queue ensuring that the queue size does
not exceed Qm.

5) If max(Q) < ε, stop training and perform channel
pruning to get an optimized network.

6) Continue training the optimized network for the remain-
ing epochs.

Two-Time Update Rule (TTUR) [12] is implemented by set-
ting the generator learning rate to 0.0001 and the discriminator
learning rate to 0.0004. The generator and discriminator are
updated in different steps.

Top-k learning is implemented similarly as in [13].

Dout = topk(D(G(z)), k) (7)

where topk is a function returning the k largest elements of
the vector. Following is the procedure for top-k training.

1) Initialize k to the batch size B and set the hyper-
parameters γ - the decay rate of k and ν - the minimum
value of k.

2) During back-propagation in the generator step, D(G(z))
values which are not in the top k samples for the batch
are discard and their gradients are not calculated.

3) After every epoch of training, k is updated as follows.

k = max(bγ ∗ ke, ν) (8)

Fig. 3. Outputs from the complete DCGAN model trained on FashionMNIST

Fig. 4. Outputs from the LTH-pruned DCGAN model trained on FashionM-
NIST

IV. EXPERIMENTATION

The DCGAN model was first trained on the FashionMNIST
dataset. Binary Cross Entropy was chosen as the loss function
for our model. This was optimized using the Adam optimizer.
The learning rate for the generator was set to 0.0002 and that
of the discriminator was set to 0.0001. The hyper-parameters
of the first and second moment for Adam were set to 0.5 and
0.999 respectively. The model was trained for 20 epochs on a
batch size of 256. The outputs from this model are shown in
Figure 3.

The DCGAN model trained on the FashionMNIST dataset
was then first subject to LTH optimization algorithm. The
values for the prune percentile p on which the model was

Fig. 5. Outputs from the channel-pruned DCGAN model trained on Fashion-
MNIST

experimented were: 80%, 72%, 61%, 55% and 51%. On
observation as shown in the Figure 4, it can be seen that the
image quality declines on decrease of the value of p. Our
model was able to achieve a maximum pruning of weights
upto 55% on retaining satisfactory image quality. Upon further
pruning to a value of 51%, the image quality decreases
drastically and further pruning would be of no help.

This optimization consumed a significant amount of com-
putation/CPU time as it required the whole model (100%)
to be re-trained about 5 to 6 times to successfully achieve
lower pruning percentiles. Due to this, we implement the EBT
optimization, which was initially inspired from LTH, to obtain
better results from our model.

Therefore, our DCGAN model earlier trained on the Fash-
ionMNIST dataset was next subjected to the EBT optimization
algorithm. For the EB Train algorithm, a maximum queue size
Qm = 3 and a threshold ε = 0.1. From Table I, we can see
that the model could be pruned to nearly 6% of the original
size with inference time decreased by nearly 21 times. The
inference time is calculated by generating images using a batch
of 1000 latent vectors. With p = 0.8, the model had less than
a million parameters. This model, when deployed as a client-
only web app, achieved inference times of less than 100ms on
CPU 1. Figure 5 shows outputs of our channel-pruned DCGAN
model for pruning percentages of 50%, 70% and 80%. It can
be noticed that there is no significant decrease in quality when
70% of the channels have been pruned while pruning 80% of
the channels leads to a slight decrease in quality. Thus, we

1This was tested on a consumer laptop with i5-8265U (4 cores, 8 threads)
and 8GB of RAM.

have empirically shown that EBT performs much better than
LTH.

TABLE I
RESULTS FROM EARLY BIRD TRAINING OF THE DCGAN64 MODEL.

p Parameters Sparsity Inference time Speedup
0.0 12.6M 100% 26.32s 1x
0.5 3.3M 26.20% 7.06s 3.78x
0.7 1.5M 11.83% 2.47s 10.7x
0.8 0.78M 6.19% 1.23s 21.2x

Fig. 6. A sample of images from the DeepFashion dataset.

On obtaining satisfactory results on the FashionMNIST
dataset, we embark on training our model on DeepFashion,
a larger dataset with images of higher resolution (128 x 128)
as compared to FashionMNIST. Figure 6 shows a sample of
images from the dataset. We train both the DCGAN64 and DC-
GAN128 models. The DCGAN64 model is trained by down-
scaling the images to 64 x 64. The training was done with EBT
(channel pruning), label smoothing [2], TTUR [12] and Top-
k sampling [13]. The following hyper-parameters were used:
LRd = 0.0004, LRg = 0.0001, p = 0.5, γk = 0.99, νk = 0.5.
The results obtained from the DCGAN64 model are shown in
Figure 7 and Figure 8 shows the outputs from DCGAN128. We
can see that the DCGAN architecture produces worse outputs
on 128x128 due to its inherent limitations.

The optimized models have been successfully deployed in a
client-side web application where they are run in real-time on
the client’s device. The web application can be accessed using
the following HTTPS URL: https://fashion.samyaks.xyz/.

V. CONCLUSION AND FUTURE WORK

In this paper, we successfully demonstrated that optimiza-
tion algorithms and techniques such as Lottery Ticket Hypoth-

https://fashion.samyaks.xyz/

Fig. 7. Outputs from the EBT-pruned DCGAN64 model trained on Deep-
Fashion

Fig. 8. Outputs from the EBT-pruned DCGAN128 model trained on Deep-
Fashion

esis, Channel Pruning and Early Bird Training implemented
on heavy-weighted Generative Adversarial Network models
obtain significant weight reduction along with retaining con-
siderable image quality. While Lottery Ticket Hypothesis helps
in optimization on neural networks, Channel pruning and EB
Training outperformed LTH by producing a sparser network
with significantly lower inference time, when implemented

on GANs. Thus, we have produced optimized Generative
networks that can be deployed on consumer devices such as
mobile phones and laptops with minimal footprint.

Our future work comprises of the following:
• Use LTH and EBT on state-of-the-art GANs such as

StyleGAN, FastGAN and others. Since channel pruning
required Batch Normalization layers, a method to extend
it to networks without BN would prove useful.

• Train the networks on larger datasets of higher resolution
images.

• Develop a server to train and optimize custom models
based on a small set of given images.

REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA),
p. 2672–2680, MIT Press, 2014.

[2] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen, “Improved techniques for training gans,” in
Advances in Neural Information Processing Systems 29 (D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 2234–
2242, Curran Associates, Inc., 2016.

[3] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 11
2016.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” vol. 37 of Pro-
ceedings of Machine Learning Research, (Lille, France), pp. 448–456,
PMLR, 07–09 Jul 2015.

[5] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
CoRR, vol. abs/1411.1784, 2014.

[6] N. Rostamzadeh, S. Hosseini, T. Boquet, W. Stokowiec, Y. Zhang,
C. Jauvin, and C. Pal, “Fashion-gen: The generative fashion dataset and
challenge,” 2018.

[7] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: Powering
robust clothes recognition and retrieval with rich annotations.,” in CVPR,
pp. 1096–1104, IEEE Computer Society, 2016.

[8] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

[9] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations, 2019.

[10] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in 2017
IEEE International Conference on Computer Vision (ICCV), pp. 2755–
2763, 2017.

[11] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G. Baraniuk,
Z. Wang, and Y. Lin, “Drawing early-bird tickets: Toward more efficient
training of deep networks,” in International Conference on Learning
Representations, 2020.

[12] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, (Red Hook, NY,
USA), p. 6629–6640, Curran Associates Inc., 2017.

[13] S. Sinha, Z. Zhao, A. Goyal, C. Raffel, and A. Odena, “Top-k Training of
GANs: Improving GAN Performance by Throwing Away Bad Samples,”
arXiv e-prints, p. arXiv:2002.06224, Feb. 2020.

	Introduction
	Related Work
	Methodology
	Experimentation
	Conclusion and Future work
	References

